## (TA: Jonghui Kim)

## TERM PROJECT\#2 (Due 06/12)

1. In order to analyze rotating machinery noise, system could be designed as follows. Assume that there are $\mathbf{4}$ blades with an angular gap of 90 degree and 5 noise sources $P_{i}$ exist on each blade surface. Angular speed of rotor is $\mathbf{6 0 0 R P M}$, pitch angle is $\mathbf{5}$ degree. Surface pressure $\mathbf{p}_{\mathbf{1}}$ is assumed to be $\boldsymbol{\rho} \mathbf{U}^{\mathbf{2}}$. (Surface pressure is varying with rotor phase, so the surface pressure of each blade is different at a certain time.)

- Caution: Rotor is operated in a standard condition ( $1 \mathrm{~atm}, 15^{\circ} \mathrm{C}$ )

a) Solve and discuss for the time history of the pressure at the observer location. Observer is located in the same surface as rotor, and x is $(20+$ the last digit of your student ID e.g. 2014-12345 => x=25). (35 pts)
b) Obtain and discuss the time history of the pressure at the observer when the observer moves from $(20,0,0)$ to $(50,0,0)$ in the speed of $\mathbf{M}=\mathbf{0 . 2}$. ( 35 pts )
c) Assume that observer locates on the vertical (to the rotor) surface as in the figure. Obtain and discuss SPL by every 5 degree of $\theta$ and draw directivity pattern of rotating machinery noise. (30 pts)



## Appendix

## ※ Formula for analyzing rotor system

(Ref. K.S.Brenter, "Prediction of Helicopter noise discrete frequency noise", 1986)

- Thickness noise : monopole

$$
4 \pi p_{T}^{\prime}=\int_{s}\left[\frac{\rho_{0} \dot{\vec{v}}_{n}}{r\left(1-M_{r}\right)^{2}}\right]_{r e t} d S+\int_{S}\left[\frac{\rho_{0} v_{n}\left(\dot{\vec{M}} \cdot \vec{r}+c_{0} M_{r}-c_{0} M^{2}\right)}{r^{2}\left(1-M_{r}\right)^{3}}\right]_{r e t} d S
$$

- Loading noise : dipole

$$
4 \pi p_{L}^{\prime}=\frac{1}{c_{0}} \int_{s}\left[\frac{\dot{p}_{l} \hat{r}}{r\left(1-M_{r}\right)^{2}}\right]_{r e t} d S+\int_{s}\left[\frac{p_{l, r}-\left(p_{l} \cdot \hat{n}\right) \cdot \vec{M}}{r^{2}\left(1-M_{r}\right)^{2}}\right]_{r e t} d S+\frac{1}{c_{0}} \int_{S}\left[\frac{p_{l, r}\left(\dot{\vec{M}} \cdot \vec{r}+c_{0} M_{r}-c_{0} M^{2}\right)}{r^{2}\left(1-M_{r}\right)^{3}}\right]_{r e t} d S
$$

- Overall noise:

$$
p^{\prime}(\vec{x}, t)=p_{T}^{\prime}(\vec{x}, t)+p_{L}^{\prime}(\vec{x}, t)
$$

[] $]_{\text {ret }}$ : retarded time
$M_{r} \quad$ : relative mach number
M : Mach number
r : distance between source and observer
$\mathrm{p}_{1} \quad$ : surface pressure
$\mathrm{v}_{\mathrm{n}} \quad$ : velocity normal to blade surface
(determined by angular velocity \& pitch angle)

